This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195257 #7 Oct 10 2020 08:25:30 %S A195257 1,5,30,185,1180,7845,54850,407225,3241200,27882725,260710150, %T A195257 2655929625,29459366500,354733101125,4617633830250,64677391201625, %U A195257 970313455915000,15525778234093125,263942044676848750,4750975877669605625,90268637043154147500 %N A195257 O.g.f.: Sum_{n>=0} 5*(n+5)^(n-1)*x^n/(1+n*x)^n. %C A195257 Compare the g.f. to: W(x)^5 = Sum_{n>=0} 5*(n+5)^(n-1)*x^n/n! where W(x) = LambertW(-x)/(-x). %C A195257 Compare to a g.f. of A000522: Sum_{n>=0} (n+1)^(n-1)*x^n/(1+n*x)^n, which generates the total number of arrangements of a set with n elements. %F A195257 a(n) = (n-1)!*Sum_{k=1..n} 5^k/(k-1)! for n>0, with a(0)=1. %F A195257 a(n) ~ 5*exp(5) * (n-1)!. - _Vaclav Kotesovec_, Oct 10 2020 %e A195257 O.g.f.: A(x) = 1 + 5*x + 30*x^2 + 185*x^3 + 1180*x^4 + 7845*x^5 +... %e A195257 where %e A195257 A(x) = 1 + 5*x/(1+x) + 5*7*x^2/(1+2*x)^2 + 5*8^2*x^3/(1+3*x)^3 + 5*9^3*x^4/(1+4*x)^4 +... %o A195257 (PARI) {a(n)=polcoeff(sum(m=0,n,5*(m+5)^(m-1)*x^m/(1+m*x+x*O(x^n))^m),n)} %o A195257 (PARI) {a(n)=if(n==0,1,(n-1)!*sum(k=1,n,5^k/(k-1)!))} %Y A195257 Cf. A000522, A195254, A195255, A195256. %K A195257 nonn %O A195257 0,2 %A A195257 _Paul D. Hanna_, Sep 13 2011