cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195278 T(n,k) = Number of lower triangles of an n X n integer array with each element differing from all of its vertical and horizontal neighbors by k or less and triangles differing by a constant counted only once.

Original entry on oeis.org

1, 1, 9, 1, 25, 171, 1, 49, 2125, 6939, 1, 81, 11319, 626525, 609309, 1, 121, 39609, 12608631, 649112125, 116330103, 1, 169, 107811, 119743353, 68604760497, 2375645170875, 48439766655, 1, 225, 248261, 724789395, 2266745635377
Offset: 1

Views

Author

R. H. Hardin, Sep 14 2011

Keywords

Comments

Table starts
.........1.............1................1..................1
.........9............25...............49.................81
.......171..........2125............11319..............39609
......6939........626525.........12608631..........119743353
....609309.....649112125......68604760497......2266745635377
.116330103.2375645170875.1833160598134397.270149651796118149

Examples

			Some solutions for n=6, k=5
...0..................0..................0..................0
...3..0...............0.-4..............-4.-4...............2.-2
...4..5.10...........-3..1.-4...........-3.-3..0............3..0.-2
...7..5..7..4........-1.-3.-4.-8.........2..0..1.-3.........7..5..1..1
...2..2..3..0..5.....-5..0.-5.-6.-9......6..2..3.-2..3......3..6..4..2.-3
..-2..1..0..1..1.-1..-2..0.-4.-6-10.-5..11..6..1.-4.-1..4...1..4..3..0.-5.-8
		

Formula

Empirical for rows:
T(1,k) = 1;
T(2,k) = 4*k^2 + 4*k + 1;
T(3,k) = (64/3)*k^5 + (160/3)*k^4 + 56*k^3 + (92/3)*k^2 + (26/3)*k + 1;
T(4,k) = (49024/315)*k^9 + (24512/35)*k^8 + (457792/315)*k^7 + (81824/45)*k^6 + (67912/45)*k^5 + (38756/45)*k^4 + (11832/35)*k^3 + (27752/315)*k^2 + (1454/105)*k + 1;
T(5,k) = (735698944/467775)*k^14 + (735698944/66825)*k^13 + (5736600832/155925)*k^12 + (36310211072/467775)*k^11 + (4906182016/42525)*k^10 + (603389056/4725)*k^9 + (4615314688/42525)*k^8 + (3060288256/42525)*k^7 + (176877304/4725)*k^6 + (647154728/42525)*k^5 + (2229757561/467775)*k^4 + (174277454/155925)*k^3 + (1380143/7425)*k^2 + (68144/3465)*k + 1;