This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195287 #42 May 05 2019 03:24:23 %S A195287 2,0,4,8,232,448,18224,35424,1036064,2025472,130960832,257072000, %T A195287 689908475264,1358275350528,8031885897472,15847920983552, %U A195287 7981032500085248,15774370258485248,12448755354530366464 %N A195287 a(n) = (A091137(n)/n!) * Integral_{u=-1..1} u*(u+1)*...*(u+n-1) du. %C A195287 Numerators of the second row of an array based on Adams numerical integration. Take q!*s(m,q) = Integral_{-m-1..1} u*(u+1)*...*(u+q-1) du. a(n) is in the second row (case m=0) numerators of s(m,q) in the comments. %C A195287 The unreduced array s(m,q), (m=-1,0,1,..., columns q=0,1,2,...) is %C A195287 1, 1/2, 5/12, 9/24, 251/720, 475/1440, = A002657(n)/A091137(n), %C A195287 2, 0, 4/12, 8/24, 232/720, 448/1440, = a(n)/A091137(n), %C A195287 3, -3/2, 9/12, 9/24, 243/720, 459/1440, %C A195287 4, -8/2, 32/12, 0, 224/720, 448/1440, %C A195287 5, -15/2, 85/12, -55/24, 475/720, 475/1440, %C A195287 6, -24/2, 180/12, -216/24, 2376/720, 0. %C A195287 Column numerators: A000027, -A067998(n), A152064(n), A157371(n), A165281(n). %C A195287 Page 56 of the reference. %C A195287 (*) 2/2 = 1, %C A195287 2/2 + 0 = 1, %C A195287 2/3 + 0 + 1/3 = 1, %C A195287 2/4 + 0 + 1/6 + 1/3 = 1. Reduced. %D A195287 P. Curtz, Intégration numérique des systèmes differentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. %F A195287 b(n) = a(n)/A091137(n). %F A195287 b(0)/2 = 1, %F A195287 b(0)/2 + b(1) = 1, %F A195287 b(0)/3 + b(1)/2 + b(2) = 1, %F A195287 b(0)/4 + b(1)/3 + b(2)/2 + b(3) = 1. %F A195287 First vertical denominators: A028310(n) + 1. See A104661. %F A195287 Values in (*). %p A195287 A195287 := proc(n) %p A195287 mul(u+i,i=0..n-1) ; %p A195287 int(%,u=-1..1) ; %p A195287 %/n!*A091137(n) ; %p A195287 end proc: %p A195287 seq(A195287(n),n=0..20) ; # _R. J. Mathar_, Oct 02 2011 %t A195287 (* a7 = A091137 *) a7[n_] := a7[n] = Product[d, {d, Select[Divisors[n] + 1, PrimeQ]}]*a7[n-1]; a7[0]=1; a[n_] := a7[n]/n!*Integrate[ Pochhammer[u, n], {u, -1, 1}]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Aug 13 2012 *) %K A195287 nonn %O A195287 0,1 %A A195287 _Paul Curtz_, Sep 20 2011