This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195290 #10 Mar 30 2012 18:57:45 %S A195290 6,0,6,0,9,1,5,2,6,7,3,1,3,2,6,4,4,9,4,8,6,4,3,8,0,2,4,6,6,1,2,9,9,1, %T A195290 7,6,5,2,9,8,5,9,3,7,5,1,6,1,5,4,9,1,7,4,2,1,8,5,7,7,0,3,0,5,6,7,4,5, %U A195290 6,7,7,6,4,8,3,7,6,0,1,5,9,5,0,7,3,0,8,9,4,3,2,8,3,2,7,4,9,5,9,7 %N A195290 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(7,24,25). %C A195290 See A195284 for definitions and a general discussion. %e A195290 (A)=6.0609152673132644948643802466... %t A195290 a = 7; b = 24; c = 25; %t A195290 h = a (a + c)/(a + b + c); k = a*b/(a + b + c); %t A195290 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; %t A195290 s = NSolve[D[f[t], t] == 0, t, 150] %t A195290 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195290 RealDigits[%, 10, 100] (* (A) A195290 *) %t A195290 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195290 s = NSolve[D[f[t], t] == 0, t, 150] %t A195290 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195290 RealDigits[%, 10, 100] (* (B)=7.5 *) %t A195290 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195290 s = NSolve[D[f[t], t] == 0, t, 150] %t A195290 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195290 RealDigits[%, 10, 100] (* (C) A010524 *) %t A195290 (f1 + f2 + f3)/(a + b + c) %t A195290 RealDigits[%, 10, 100] (* Philo(ABC,I) A195292 *) %Y A195290 Cf. A195284, A195292. %K A195290 nonn,cons %O A195290 1,1 %A A195290 _Clark Kimberling_, Sep 14 2011