This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195292 #10 Mar 30 2012 18:57:45 %S A195292 3,9,3,6,8,2,0,8,2,8,8,4,8,5,4,1,9,2,6,3,7,0,4,4,8,6,7,7,1,1,9,8,5,3, %T A195292 6,1,3,6,9,9,3,9,7,3,2,2,1,2,0,9,2,5,0,3,2,3,6,5,3,3,0,1,3,1,0,0,3,3, %U A195292 8,6,1,8,4,9,3,0,4,0,0,6,8,3,6,0,2,7,5,2,6,1,4,0,7,1,1,7,8,3,9,8 %N A195292 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 7,24,25 right triangle ABC. %C A195292 See A195284 for definitions and a general discussion. %e A195292 Philo(ABC,I)=0.39368208288485419263704486771198536... %t A195292 a = 7; b = 24; c = 25; %t A195292 h = a (a + c)/(a + b + c); k = a*b/(a + b + c); %t A195292 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; %t A195292 s = NSolve[D[f[t], t] == 0, t, 150] %t A195292 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195292 RealDigits[%, 10, 100] (* (A) A195290 *) %t A195292 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195292 s = NSolve[D[f[t], t] == 0, t, 150] %t A195292 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195292 RealDigits[%, 10, 100] (* (B)=7.5 *) %t A195292 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195292 s = NSolve[D[f[t], t] == 0, t, 150] %t A195292 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195292 RealDigits[%, 10, 100] (* (C) A010524 *) %t A195292 (f1 + f2 + f3)/(a + b + c) %t A195292 RealDigits[%, 10, 100] (* Philo(ABC,I) A195292 *) %Y A195292 Cf. A195284. %K A195292 nonn,cons %O A195292 0,1 %A A195292 _Clark Kimberling_, Sep 14 2011