This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195293 #10 Mar 30 2012 18:57:45 %S A195293 6,1,8,4,6,5,8,4,3,8,4,2,6,4,9,0,8,2,4,7,3,2,1,1,4,7,8,3,9,6,1,1,1,5, %T A195293 5,3,7,7,2,0,7,9,8,8,3,8,0,6,0,4,3,0,6,5,1,5,9,7,9,5,0,3,5,9,6,4,2,4, %U A195293 3,1,5,1,9,5,0,6,4,3,2,3,9,0,3,8,1,7,9,5,4,7,6,2,1,6,0,2,6,4,4 %N A195293 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(8,15,17). %C A195293 See A195284 for definitions and a general discussion. %e A195293 (A)=6.18465843842649082473211478396111... %t A195293 a = 8; b = 15; c = 17; %t A195293 h = a (a + c)/(a + b + c); k = a*b/(a + b + c); %t A195293 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; %t A195293 s = NSolve[D[f[t], t] == 0, t, 150] %t A195293 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195293 RealDigits[%, 10, 100] (* (A) A195293 *) %t A195293 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195293 s = NSolve[D[f[t], t] == 0, t, 150] %t A195293 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195293 RealDigits[%, 10, 100] (* (B) A195296 *) %t A195293 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195293 s = NSolve[D[f[t], t] == 0, t, 150] %t A195293 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195293 RealDigits[%, 10, 100] (* (C) A010524 *) %t A195293 (f1 + f2 + f3)/(a + b + c) %t A195293 RealDigits[%, 10, 100] (* Philo(ABC,I), A195297 *) %Y A195293 Cf. A195284, A010524, A195296, A195297. %K A195293 nonn,cons %O A195293 1,1 %A A195293 _Clark Kimberling_, Sep 14 2011