cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195293 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(8,15,17).

This page as a plain text file.
%I A195293 #10 Mar 30 2012 18:57:45
%S A195293 6,1,8,4,6,5,8,4,3,8,4,2,6,4,9,0,8,2,4,7,3,2,1,1,4,7,8,3,9,6,1,1,1,5,
%T A195293 5,3,7,7,2,0,7,9,8,8,3,8,0,6,0,4,3,0,6,5,1,5,9,7,9,5,0,3,5,9,6,4,2,4,
%U A195293 3,1,5,1,9,5,0,6,4,3,2,3,9,0,3,8,1,7,9,5,4,7,6,2,1,6,0,2,6,4,4
%N A195293 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(8,15,17).
%C A195293 See A195284 for definitions and a general discussion.
%e A195293 (A)=6.18465843842649082473211478396111...
%t A195293 a = 8; b = 15; c = 17;
%t A195293 h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
%t A195293 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
%t A195293 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195293 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195293 RealDigits[%, 10, 100] (* (A) A195293 *)
%t A195293 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195293 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195293 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195293 RealDigits[%, 10, 100] (* (B) A195296 *)
%t A195293 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195293 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195293 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195293 RealDigits[%, 10, 100] (* (C) A010524 *)
%t A195293 (f1 + f2 + f3)/(a + b + c)
%t A195293 RealDigits[%, 10, 100] (* Philo(ABC,I), A195297 *)
%Y A195293 Cf. A195284, A010524, A195296, A195297.
%K A195293 nonn,cons
%O A195293 1,1
%A A195293 _Clark Kimberling_, Sep 14 2011