cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195296 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(8,15,17).

This page as a plain text file.
%I A195296 #10 Mar 30 2012 18:57:45
%S A195296 6,9,9,7,1,4,2,2,7,3,8,1,4,3,6,0,5,6,5,0,4,8,9,8,3,4,5,3,0,5,4,6,9,9,
%T A195296 6,9,1,8,2,5,6,7,8,0,0,1,8,6,3,1,6,6,3,4,5,3,4,0,0,0,8,0,9,3,8,4,1,3,
%U A195296 7,2,0,7,4,3,9,6,0,5,5,1,5,3,1,9,8,2,8,8,3,9,1,7,4,3,6,4,2,4,7
%N A195296 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(8,15,17).
%C A195296 See A195284 for definitions and a general discussion.
%e A195296 (C)=6.99714227381436056504898345305469969182567800...
%t A195296 a = 8; b = 15; c = 17;
%t A195296 h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
%t A195296 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
%t A195296 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195296 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195296 RealDigits[%, 10, 100] (* (A) A195293 *)
%t A195296 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195296 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195296 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195296 RealDigits[%, 10, 100] (* (B) A195296 *)
%t A195296 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195296 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195296 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195296 RealDigits[%, 10, 100] (* (C) A010524 *)
%t A195296 (f1 + f2 + f3)/(a + b + c)
%t A195296 RealDigits[%, 10, 100] (* Philo(ABC,I), A195297 *)
%Y A195296 Cf. A195284.
%K A195296 nonn,cons
%O A195296 1,1
%A A195296 _Clark Kimberling_, Sep 14 2011