cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195298 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(28,45,53).

This page as a plain text file.
%I A195298 #9 Mar 30 2012 18:57:45
%S A195298 2,0,8,0,0,3,1,3,9,6,9,3,7,2,9,0,9,3,4,5,9,9,2,2,9,2,8,3,2,9,3,4,3,7,
%T A195298 9,4,1,0,7,9,3,3,4,1,9,5,0,2,1,8,5,0,6,9,6,6,7,9,4,8,0,5,1,1,7,9,5,4,
%U A195298 6,1,6,3,9,6,0,7,1,1,5,7,6,6,6,6,5,5,9,4,1,1,6,8,8,0,2,6,4,7,8
%N A195298 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(28,45,53).
%C A195298 See A195284 for definitions and a general discussion.
%e A195298 (A)=20.800313969372909345992292832934379410...
%t A195298 a = 28; b = 45; c = 53;
%t A195298 h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
%t A195298 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
%t A195298 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195298 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195298 RealDigits[%, 10, 100] (* (A) A195298 *)
%t A195298 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195298 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195298 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195298 RealDigits[%, 10, 100] (* (B) A195299 *)
%t A195298 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195298 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195298 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195298 RealDigits[%, 10, 100] (* (C)=20*sqrt(2) *)
%t A195298 (f1 + f2 + f3)/(a + b + c)
%t A195298 RealDigits[%, 10, 100]  (* Phil(ABC,I), A195300 *)
%Y A195298 Cf. A195284, A195299, A195300, A195301.
%K A195298 nonn,cons
%O A195298 2,1
%A A195298 _Clark Kimberling_, Sep 14 2011