cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195299 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(28,45,53).

This page as a plain text file.
%I A195299 #8 Mar 30 2012 18:57:45
%S A195299 2,2,8,7,9,1,7,8,0,9,1,0,8,2,2,2,2,9,2,3,9,9,4,1,5,4,3,6,4,8,8,3,4,4,
%T A195299 4,3,9,7,1,0,8,4,4,7,6,0,7,7,5,9,9,0,4,2,7,1,6,5,4,6,8,0,0,9,1,9,9,5,
%U A195299 6,9,3,6,1,7,7,7,2,8,6,3,9,4,2,2,8,7,8,9,5,5,8,5,2,3,9,0,3,4,6
%N A195299 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(28,45,53).
%C A195299 See A195284 for definitions and a general discussion.
%e A195299 (C)=
%t A195299 a = 28; b = 45; c = 53;
%t A195299 h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
%t A195299 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
%t A195299 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195299 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195299 RealDigits[%, 10, 100] (* (A) A195298 *)
%t A195299 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195299 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195299 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195299 RealDigits[%, 10, 100] (* (B) A195299 *)
%t A195299 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195299 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195299 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195299 RealDigits[%, 10, 100] (* (C)=20*sqrt(2) *)
%t A195299 (f1 + f2 + f3)/(a + b + c)
%t A195299 RealDigits[%, 10, 100]  (* Phil(ABC,I), A195300 *)
%Y A195299 Cf. A195284.
%K A195299 nonn,cons
%O A195299 2,1
%A A195299 _Clark Kimberling_, Sep 14 2011