cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195301 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).

This page as a plain text file.
%I A195301 #14 Jul 27 2018 09:35:51
%S A195301 6,3,4,0,5,0,6,7,1,1,2,4,4,2,8,8,5,0,6,8,5,0,5,2,8,8,5,3,4,3,9,6,2,2,
%T A195301 1,3,1,9,8,9,1,0,0,0,3,5,6,9,5,5,3,6,1,2,9,8,9,9,8,5,8,4,0,1,0,1,7,7,
%U A195301 1,7,5,8,3,2,3,6,9,1,8,9,6,9,6,3,2,4,9,4,5,6,6,6,3,1,1,0,0,0
%N A195301 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).
%C A195301 See A195284 for definitions and a general discussion.
%H A195301 G. C. Greubel, <a href="/A195301/b195301.txt">Table of n, a(n) for n = 0..10000</a>
%e A195301 (A)=0.63405067112442885068505288534396221319891000...
%t A195301 a = 1; b = 1; c = Sqrt[2];
%t A195301 h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
%t A195301 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
%t A195301 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195301 f1 = (f[t])^(1/2) /. Part[s, 1]
%t A195301 RealDigits[%, 10, 100] (* (A) A195301 *)
%t A195301 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195301 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195301 f3 = (f[t])^(1/2) /. Part[s, 4]
%t A195301 RealDigits[%, 10, 100] (* (B)=(A) *)
%t A195301 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195301 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195301 f2 = (f[t])^(1/2) /. Part[s, 1]
%t A195301 RealDigits[%, 10, 100] (* (C) A163960 *)
%t A195301 (f1 + f2 + f3)/(a + b + c)
%t A195301 RealDigits[%, 10, 100]  (* Philo(ABC,I), A195303 *)
%Y A195301 Cf. A195284, A195303, A195304.
%K A195301 nonn,cons
%O A195301 0,1
%A A195301 _Clark Kimberling_, Sep 14 2011