cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195304 Decimal expansion of shortest length of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5).

This page as a plain text file.
%I A195304 #10 Feb 03 2025 09:07:03
%S A195304 1,8,9,6,3,0,0,5,6,6,3,0,9,2,0,2,0,1,4,7,5,3,8,6,7,2,0,3,6,5,4,8,1,9,
%T A195304 9,1,7,0,8,0,1,0,3,2,8,2,9,8,1,9,2,8,6,6,6,4,1,0,2,7,8,4,3,9,4,4,4,2,
%U A195304 9,7,6,3,7,7,2,5,4,6,2,9,2,1,1,7,4,3,4,9,5,1,7,5,2,6,6,7,2,1,0,7
%N A195304 Decimal expansion of shortest length of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5).
%C A195304 The Philo line of a point P inside an angle T is the shortest segment that crosses T and passes through P.  Philo lines are not generally Euclidean-constructible.
%C A195304 ...
%C A195304 Suppose that P lies inside a triangle ABC.  Let (A) denote the shortest length of segment from AB through P to AC, and likewise for (B) and (C).  The Philo sum for ABC and P is here introduced as s=(A)+(B)+(C), and the Philo number for ABC and P, as s/(a+b+c), denoted by Philo(ABC,P).
%C A195304 ...
%C A195304 Listed below are examples for which P=G (the centroid); in this list, r'n means sqrt(n) and t=(1+sqrt(5))/2 (the golden ratio).
%C A195304 a....b...c........(A).......(B)........(C)...Philo(ABC,G)
%C A195304 3....4....5......A195304...A195305....A105306...A195411
%C A195304 5....12...13.....A195412...A195413....A195414...A195424
%C A195304 7....24...25.....A195425...A195426....A195427...A195428
%C A195304 8....15...17.....A195429...A195430....A195431...A195432
%C A195304 1....1....r'2....A195433..-1+A179587..A195433...A195436
%C A195304 1....2....r'5....A195434...A195435....A195444...A195445
%C A195304 1....3....r'10...A195446...A195447....A195448...A195449
%C A195304 2....3....r'13...A195450...A195451....A195452...A195453
%C A195304 r'2..r'3..r'5....A195454...A195455....A195456...A195457
%C A195304 1....r'2..r'3....A195471...A195472....A195473...A195474
%C A195304 1....r'3..2......A195475...A195476....A195477...A195478
%C A195304 2....r'5..3......A195479...A195480....A195481...A195482
%C A195304 r'2..r'5..r'7....A195483...A195484....A195485...A195486
%C A195304 r'7..3....4......A195487...A195488....A195489...A195490
%C A195304 1....r't..t......A195491...A195492....A195493...A195494
%C A195304 t-1..t....r'3....A195495...A195496....A195497...A195498
%C A195304 A similar list for P=incenter is given at A195284.
%H A195304 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>
%e A195304 1.89630056630920201475386720365481991708010328....
%t A195304 a = 3; b = 4; h = 2 a/3; k = b/3;
%t A195304 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195304 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195304 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195304 RealDigits[%, 10, 100]   (* (A) A195304 *)
%t A195304 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195304 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195304 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195304 RealDigits[%, 10, 100]   (* (B) A195305 *)
%t A195304 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195304 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195304 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195304 RealDigits[%, 10, 100]   (* (C) A195306 *)
%t A195304 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195304 RealDigits[%, 10, 100]   (* Philo(ABC,G) A195411 *)
%o A195304 (PARI) polrootsreal(2025*x^6 + 21429*x^4 + 4939*x^2 - 389017)[2] \\ _Charles R Greathouse IV_, Feb 03 2025
%Y A195304 Cf. A195305, A195306, A195307; A195284 (P=incenter).
%K A195304 nonn,cons
%O A195304 1,2
%A A195304 _Clark Kimberling_, Sep 18 2011