cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.

This page as a plain text file.
%I A195309 #27 Jun 16 2017 02:55:39
%S A195309 1,9,11,45,39,126,94,270,185,495,321,819,511,1260,764,1836,1089,2565,
%T A195309 1495,3465,1991,4554,2586,5850,3289,7371,4109,9135,5055,11160,6136,
%U A195309 13464,7361,16065,8739,18981,10279,22230,11990,25830,13881
%N A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.
%C A195309 The integers in same rows of the source triangle have a property related to Euler's Pentagonal Theorem.
%C A195309 Note that the column 1 of the mentioned triangle gives the positive terms of A001318 (see example).
%H A195309 G. C. Greubel, <a href="/A195309/b195309.txt">Table of n, a(n) for n = 1..1000</a>
%H A195309 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1).
%F A195309 a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - _R. J. Mathar_, Oct 08 2011
%F A195309 G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - _R. J. Mathar_, Oct 08 2011
%e A195309 a(1) = 1
%e A195309 a(2) = 2+3+4 = 9
%e A195309 a(3) = 5+6 = 11
%e A195309 a(4) = 7+8+9+10+11 = 45
%e A195309 a(5) = 12+13+14 = 39
%e A195309 a(6) = 15+16+17+18+19+20+21 = 126
%e A195309 a(7) = 22+23+24+25 = 94
%e A195309 a(8) = 26+27+28+29+30+31+32+33+34 = 270
%e A195309 a(9) = 35+36+37+38+39 = 185
%p A195309 A195309 := proc(n)
%p A195309         (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32
%p A195309 end proc:
%p A195309 seq(A195309(n),n=1..60) ; # _R. J. Mathar_, Oct 08 2011
%t A195309 LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* _Harvey P. Dale_, Jun 22 2015 *)
%Y A195309 Cf. A026741, A195310, A195311, A004188 (bisection).
%K A195309 nonn
%O A195309 1,2
%A A195309 _Omar E. Pol_, Sep 21 2011