This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195335 #34 Jun 05 2025 13:47:15 %S A195335 2,211,211151,2111511013,211151101310867,211151101310867100673, %T A195335 2111511013108671006731000357,211151101310867100673100035710000931, %U A195335 211151101310867100673100035710000931100000213,2111511013108671006731000357100009311000002131000000901,211151101310867100673100035710000931100000213100000090110000001797 %N A195335 a(n) is the smallest Xmas tree prime with a(n-1) as a prefix (starting with 2). %C A195335 A Xmas tree prime is a prime which is a concatenation of a prime with a single digit, a prime with two digits, a prime with three digits, a prime with four digits etc. By definition, the number of digits is a triangular number (A000217). Leading zeros are not allowed for any of the primes. %H A195335 Terry Trotter, <a href="https://web.archive.org/web/20160629211025/http://trottermath.net/numtrivia/potpourri.html">Xmas tree primes</a> %p A195335 read("transforms") ; %p A195335 A195335 := proc(n) %p A195335 option remember; %p A195335 local prev,nxt,a ; %p A195335 if n =1 then %p A195335 2; %p A195335 else %p A195335 prev := procname(n-1) ; %p A195335 for nxt from 10^(n-1) to 10^n-1 do %p A195335 if isprime(nxt) then %p A195335 a := digcat2(prev,nxt) ; %p A195335 if isprime(a) then %p A195335 return a ; %p A195335 end if; %p A195335 end if; %p A195335 end do: %p A195335 return -1 ; %p A195335 end if; %p A195335 end proc: # _R. J. Mathar_, Sep 20 2011 %o A195335 (Python) %o A195335 from sympy import isprime, nextprime %o A195335 def alst(nn): %o A195335 alst, astr = [2], "2" %o A195335 for n in range(2, nn+1): %o A195335 p = nextprime(10**(n-1)) %o A195335 while not isprime(int(astr + str(p))): p = nextprime(p) %o A195335 alst.append(int(astr + str(p))); astr += str(p) %o A195335 return alst %o A195335 print(alst(11)) # _Michael S. Branicky_, Dec 26 2020 %Y A195335 Cf. A000217. %K A195335 nonn,base %O A195335 1,1 %A A195335 _Kausthub Gudipati_, Sep 16 2011 %E A195335 Name corrected by _Michael S. Branicky_, Dec 26 2020