A195336 Smallest number k such that k^n is the sum of numbers in a twin prime pair.
8, 6, 2, 150, 96, 324, 6, 1518, 174, 168, 21384, 18, 20754, 2988, 2424, 8196, 3786, 14952, 34056, 48, 1620, 8256, 31344, 1176, 123360, 147456, 28650, 132, 90, 12834, 81126, 11790, 2340, 9702, 11496, 33000, 10716, 66954, 6816, 234, 109956, 3012, 6744, 117654, 19950, 26550, 8226, 40584, 23640, 30660
Offset: 1
Keywords
Crossrefs
Cf. A054735.
Programs
-
Maple
isA054735 := proc(n) if type(n,'odd') then false; else isprime(n/2-1) and isprime(n/2+1) ; end if; end proc: A195336 := proc(n) for k from 1 do if isA054735(k^n) then return k; end if; end do: end proc: for n from 1 do print(A195336(n)) ; end do: # R. J. Mathar, Sep 20 2011
-
PARI
a(n)=my(k=2);while(!ispseudoprime(k^n/2-1)||!ispseudoprime(k^n/2+1),k+=2);k \\ Charles R Greathouse IV, Sep 18 2011
-
Python
from sympy import isprime def cond(k, n): m = (k**n)//2; return isprime(m-1) and isprime(m+1) def a(n): k = 2 while not cond(k, n): k += 2 return k print([a(n) for n in range(1, 25)]) # Michael S. Branicky, Aug 06 2021
Formula
a(n) is the least k such that (1/2)*k^n - 1 and (1/2)*k^n + 1 are prime.
Extensions
a(11)-a(50) from Charles R Greathouse IV, Sep 18 2011
Comments