This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195339 #21 Mar 29 2024 05:43:22 %S A195339 1,4,16,62,239,920,3540,13620,52401,201604,775636,2984122,11480879, %T A195339 44170640,169938680,653808840,2515413201,9677604804,37232862856, %U A195339 143246816182,551116641919,2120323237160,8157566453420,31384785713660,120747379738401 %N A195339 Expansion of 1/(1-4*x+2*x^3+x^4). %H A195339 Bruno Berselli, <a href="/A195339/b195339.txt">Table of n, a(n) for n = 0..1000</a> %H A195339 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-2,-1). %F A195339 G.f.: 1/((1-x)*(1-3*x-3*x^2-x^3)). %F A195339 a(n) = 4*a(n-1)-2*a(n-3)-a(n-4). %t A195339 CoefficientList[Series[1/(1-4x+2x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{4,0,-2,-1},{1,4,16,62},30] (* _Harvey P. Dale_, Dec 02 2011 *) %o A195339 (PARI) Vec(1/(1-4*x+2*x^3+x^4)+O(x^25)) %o A195339 (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-4*x+2*x^3+x^4))); %o A195339 (Maxima) makelist(coeff(taylor(1/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 24); %Y A195339 Cf. A185962 (gives the coefficients of the denominator of the g.f., row 5 of its triangular array). Sequences likewise related to A185962: A000007 (row 1), A000012 (row 2), A000129 (row 3) and A006190 (row 4). %K A195339 nonn,easy %O A195339 0,2 %A A195339 _Bruno Berselli_, Sep 16 2011