cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195342 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).

This page as a plain text file.
%I A195342 #7 Feb 22 2025 20:36:58
%S A195342 1,0,8,0,3,6,3,0,2,6,9,5,0,9,0,5,8,1,4,4,0,6,1,7,2,6,2,8,1,9,6,3,7,5,
%T A195342 7,0,1,9,8,9,4,6,0,4,8,6,8,0,5,6,2,7,3,9,2,6,7,2,5,3,4,3,6,1,1,7,9,6,
%U A195342 0,2,9,9,6,7,4,7,0,8,2,8,9,5,2,0,6,9,1,4,4,9,4,6,0,3,6,2,4,4,2,3
%N A195342 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
%C A195342 See A195284 for definitions and a general discussion.
%H A195342 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>
%e A195342 (C)=1.0803630269509058144061726281963757019894604...
%t A195342 a = 1; b = 2; c = Sqrt[5]; f = 2 a*b/(a + b + c);
%t A195342 x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ];
%t A195342 x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ];
%t A195342 x3 = f*Sqrt[2];
%t A195342 N[x1, 100]
%t A195342 RealDigits[%] (* (A) A195340 *)
%t A195342 N[x2, 100]
%t A195342 RealDigits[%] (* (B) A195341 *)
%t A195342 N[x3, 100]
%t A195342 RealDigits[%] (* (C) A195342 *)
%t A195342 N[(x1 + x2 + x3)/(a + b + c), 100]
%t A195342 RealDigits[%] (* Philo(ABC,I) A195343 *)
%o A195342 (PARI) 4*sqrt(2)/(3 + sqrt(5)) \\ _Charles R Greathouse IV_, Feb 22 2025
%Y A195342 Cf. A195284.
%K A195342 nonn,cons
%O A195342 1,3
%A A195342 _Clark Kimberling_, Sep 16 2011