cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195345 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)).

This page as a plain text file.
%I A195345 #7 Feb 11 2025 12:28:55
%S A195345 1,0,3,2,6,4,1,4,9,1,2,0,9,3,4,7,3,6,1,4,7,5,6,3,7,6,5,5,6,5,7,6,1,1,
%T A195345 4,8,5,4,1,4,2,2,0,1,8,5,8,1,6,7,1,1,5,6,8,9,2,7,0,6,5,3,6,1,1,0,5,5,
%U A195345 7,9,5,0,5,3,9,8,2,3,3,0,2,4,9,7,6,0,2,8,0,4,2,2,8,7,6,6,4,8,1,9
%N A195345 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)).
%C A195345 See A195284 for definitions and a general discussion.
%H A195345 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%e A195345 (B)=1.0326414912093473614756376556576114854142201858...
%t A195345 a = 1; b = 3; c = Sqrt[10]; f = 2 a*b/(a + b + c);
%t A195345 x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
%t A195345 x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
%t A195345 x3 = f*Sqrt[2]
%t A195345 N[x1, 100]
%t A195345 RealDigits[%]  (* A195344 *)
%t A195345 N[x2, 100]
%t A195345 RealDigits[%] (* A195345 *)
%t A195345 N[x3, 100]
%t A195345 RealDigits[%] (* A195346 *)
%t A195345 N[(x1 + x2 + x3)/(a + b + c), 100]
%t A195345 RealDigits[%] (* A195347 *)
%o A195345 (PARI) (6*sqrt(20 + sqrt(40)))/(14 + 5*sqrt(10)) \\ _Charles R Greathouse IV_, Feb 11 2025
%Y A195345 Cf. A195284.
%K A195345 nonn,cons
%O A195345 1,3
%A A195345 _Clark Kimberling_, Sep 16 2011