A195347 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,3,sqrt(10) right triangle ABC.
4, 2, 8, 0, 8, 1, 8, 0, 5, 8, 1, 2, 5, 2, 1, 9, 3, 5, 0, 2, 5, 2, 6, 7, 1, 5, 1, 7, 0, 3, 6, 9, 8, 0, 9, 0, 1, 5, 6, 8, 4, 4, 3, 6, 5, 5, 7, 9, 1, 6, 1, 2, 6, 4, 4, 4, 1, 3, 4, 3, 5, 9, 8, 2, 0, 8, 3, 7, 1, 5, 1, 0, 6, 3, 2, 7, 9, 2, 1, 5, 9, 8, 0, 0, 9, 5, 9, 6, 4, 6, 1, 4, 6, 2, 9, 7, 1, 1, 0, 7, 7
Offset: 0
Examples
Philo(ABC,I)=0.4280818058125219350252671517036980901568443655...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = 3; c = Sqrt[10]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* A195344 *) N[x2, 100] RealDigits[%] (* A195345 *) N[x3, 100] RealDigits[%] (* A195346 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195347 *)
-
PARI
polrootsreal(6561*x^8 - 42107688*x^6 + 495305280*x^5 + 39826979224*x^4 - 60652800*x^3 - 4964068512*x^2 - 900806400*x - 44270064)[6] \\ Charles R Greathouse IV, Feb 11 2025
Extensions
a(99) corrected by Georg Fischer, Jul 18 2021
Comments