A195348 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90.
7, 5, 7, 8, 7, 4, 7, 6, 3, 9, 2, 6, 0, 2, 3, 9, 9, 8, 8, 1, 2, 1, 8, 6, 7, 4, 7, 4, 2, 7, 0, 0, 9, 5, 3, 0, 3, 4, 6, 7, 9, 2, 5, 4, 0, 1, 9, 4, 4, 5, 2, 0, 3, 5, 8, 4, 1, 3, 3, 3, 8, 1, 7, 4, 6, 1, 0, 0, 9, 1, 5, 8, 9, 3, 3, 7, 9, 8, 1, 0, 2, 3, 2, 1, 8, 3, 1, 2, 7, 1, 1, 0, 1, 2, 8, 5, 8, 2, 1, 3
Offset: 0
Examples
(A)=0.7578747639260239988121867474270095303467925401944... (A)=(4*sqrt(6-3*sqrt(3)))/(3+sqrt(3)) (B)=2-(2/3)sqrt(3) (C)=sqrt(6)-sqrt(2)
Programs
-
Mathematica
a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *)
Comments