A195368 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a sqrt(2),sqrt(3),sqrt(5) right triangle ABC.
6, 0, 5, 8, 6, 1, 8, 4, 2, 3, 6, 1, 2, 3, 9, 9, 3, 3, 8, 5, 6, 6, 2, 4, 1, 9, 1, 1, 1, 8, 2, 7, 5, 0, 7, 5, 0, 6, 7, 8, 1, 8, 6, 5, 3, 3, 5, 1, 4, 6, 6, 2, 8, 3, 1, 7, 5, 5, 5, 7, 8, 8, 3, 5, 9, 2, 6, 5, 2, 2, 7, 9, 1, 0, 0, 9, 3, 2, 5, 7, 1, 0, 0, 5, 4, 5, 1, 7, 1, 6, 1, 1, 5, 9, 4, 0, 2, 1, 6, 4
Offset: 0
Examples
Philo(ABC,I)=0.6058618423612399338566241911182750750678...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195365 *) N[x2, 100] RealDigits[%] (* (B) A195366 *) N[x3, 100] RealDigits[%] (* (C) A195367 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195368 *)
Comments