A195371 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
9, 6, 4, 7, 2, 3, 8, 1, 9, 5, 8, 9, 9, 1, 6, 9, 5, 0, 6, 0, 4, 4, 0, 4, 6, 4, 9, 5, 0, 3, 8, 0, 6, 6, 8, 6, 6, 0, 3, 7, 2, 4, 3, 9, 4, 7, 2, 0, 2, 7, 7, 9, 4, 4, 7, 4, 3, 9, 8, 7, 1, 7, 0, 7, 3, 9, 7, 7, 2, 1, 0, 1, 0, 0, 4, 7, 9, 2, 0, 1, 2, 3, 1, 0, 5, 2, 8, 1, 0, 1, 2, 2, 3, 0, 0, 1, 3, 3, 7, 9
Offset: 0
Examples
(C)=0.96472381958991695060440464950380668660...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = 1; b = Sqrt[2]; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195369 *) N[x2, 100] RealDigits[%] (* (B) A195370 *) N[x3, 100] RealDigits[%] (* (C) A195371 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195372 *)
Comments