A195386 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).
1, 0, 4, 5, 8, 3, 1, 3, 7, 9, 9, 7, 9, 9, 5, 5, 8, 7, 4, 9, 4, 8, 7, 2, 0, 5, 7, 5, 7, 0, 3, 4, 1, 1, 6, 8, 1, 4, 2, 4, 8, 5, 2, 0, 4, 7, 4, 4, 8, 0, 2, 4, 4, 0, 9, 4, 4, 5, 3, 8, 9, 4, 5, 8, 9, 0, 4, 0, 7, 2, 1, 2, 7, 2, 0, 5, 8, 6, 7, 2, 9, 0, 3, 5, 6, 3, 1, 8, 0, 3, 1, 7, 9, 4, 4, 5, 7, 4, 1, 1
Offset: 1
Examples
(A)=1.0458313799799558749487205757034116814248520474480...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = Sqrt[2]; b = Sqrt[5]; c = Sqrt[7]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195386 *) N[x2, 100] RealDigits[%] (* (A) A195387 *) N[x3, 100] RealDigits[%] (* (A) A195388 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195389 *)
Comments