cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195397 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(3),sqrt(5),sqrt(8)).

This page as a plain text file.
%I A195397 #5 Mar 30 2012 18:57:45
%S A195397 1,6,1,1,7,6,7,4,0,2,9,5,1,5,5,7,4,3,0,1,9,6,1,7,7,6,1,9,1,3,8,6,0,9,
%T A195397 9,2,5,6,8,5,5,0,2,6,1,9,9,8,1,8,8,6,9,5,5,2,9,0,1,9,7,4,2,0,0,4,3,5,
%U A195397 5,4,8,1,6,0,9,6,5,5,3,2,4,7,8,8,4,1,0,7,5,4,1,4,8,3,9,4,0,5,3,0
%N A195397 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(3),sqrt(5),sqrt(8)).
%C A195397 See A195284 for definitions and a general discussion.
%e A195397 (C)=1.6117674029515574301961776191386099256...
%t A195397 a = Sqrt[3]; b = Sqrt[5]; c = Sqrt[8];
%t A195397 f = 2 a*b/(a + b + c);
%t A195397 x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
%t A195397 x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
%t A195397 x3 = f*Sqrt[2]
%t A195397 N[x1, 100]
%t A195397 RealDigits[%]    (* (A) A195395 *)
%t A195397 N[x2, 100]
%t A195397 RealDigits[%]    (* (B) A195396 *)
%t A195397 N[x3, 100]
%t A195397 RealDigits[%]    (* (C) A195397 *)
%t A195397 N[(x1 + x2 + x3)/(a + b + c), 100]
%t A195397 RealDigits[%]    (*  Philo(ABC,I) A195398 *)
%Y A195397 Cf. A195284.
%K A195397 nonn,cons
%O A195397 1,2
%A A195397 _Clark Kimberling_, Sep 17 2011