A195403 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
6, 9, 2, 0, 2, 8, 6, 7, 8, 4, 7, 1, 6, 5, 1, 7, 6, 7, 9, 0, 4, 3, 2, 8, 7, 4, 5, 2, 5, 6, 2, 9, 3, 2, 5, 2, 0, 0, 9, 4, 0, 2, 2, 7, 5, 9, 3, 1, 3, 3, 3, 2, 2, 7, 0, 3, 7, 6, 1, 6, 4, 8, 0, 3, 3, 1, 9, 2, 5, 7, 7, 4, 5, 6, 5, 6, 6, 8, 8, 7, 5, 7, 5, 3, 6, 4, 5, 9, 7, 8, 4, 0, 1, 8, 6, 1, 7, 5, 7, 8, 9
Offset: 0
Examples
(A)=0.69202867847165176790432874525629325200...
Programs
-
Mathematica
a = 1; b = Sqrt[c]; c = (1 + Sqrt[5])/2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195403 *) N[x2, 100] RealDigits[%] (* (B) A195404 *) N[x3, 100] RealDigits[%] (* (C) A195405 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195406 *)
Extensions
a(99) corrected by Georg Fischer, Jul 18 2021
Comments