A195404 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
7, 2, 7, 0, 9, 2, 0, 6, 2, 9, 2, 8, 0, 7, 0, 1, 2, 0, 5, 2, 4, 5, 5, 7, 2, 3, 6, 3, 8, 0, 5, 8, 0, 9, 4, 1, 6, 2, 4, 2, 4, 2, 5, 2, 1, 7, 4, 5, 8, 0, 8, 3, 2, 5, 7, 3, 6, 5, 7, 5, 7, 6, 7, 7, 6, 9, 1, 4, 1, 5, 2, 5, 3, 8, 2, 8, 6, 6, 1, 4, 9, 5, 9, 7, 1, 7, 4, 1, 8, 1, 0, 0, 0, 1, 3, 4, 3, 4, 7, 4, 5, 5, 9, 6, 5
Offset: 0
Examples
(B)=0.72709206292807012052455723638058094...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = Sqrt[c]; c = (1 + Sqrt[5])/2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195403 *) N[x2, 100] RealDigits[%] (* (B) A195404 *) N[x3, 100] RealDigits[%] (* (C) A195405 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195406 *)
Extensions
a(99) corrected by Georg Fischer, Jul 18 2021
Comments