A195407 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
5, 1, 2, 5, 2, 2, 2, 7, 2, 3, 6, 2, 2, 2, 5, 3, 7, 9, 2, 6, 3, 5, 4, 9, 4, 5, 5, 8, 1, 0, 7, 3, 5, 5, 1, 6, 9, 4, 7, 8, 2, 1, 9, 0, 8, 2, 6, 1, 4, 2, 4, 2, 5, 7, 4, 2, 0, 1, 3, 0, 4, 2, 4, 3, 2, 2, 0, 8, 9, 6, 5, 5, 7, 2, 5, 0, 5, 7, 7, 4, 0, 5, 1, 8, 9, 2, 2, 1, 3, 7, 8, 5, 6, 1, 3, 0, 7, 0, 5, 9
Offset: 0
Examples
(A)=0.51252227236222537926354945581073551694...
Programs
-
Mathematica
a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195407 *) N[x2, 100] RealDigits[%] (* (B) A195408 *) N[x3, 100] RealDigits[%] (* (C) A195409 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195410 *)
Comments