A195408 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
6, 1, 1, 9, 2, 5, 9, 5, 8, 1, 2, 5, 9, 0, 9, 7, 6, 8, 1, 1, 4, 8, 3, 8, 0, 1, 4, 4, 0, 1, 1, 7, 0, 7, 3, 8, 9, 1, 9, 7, 3, 5, 9, 3, 3, 2, 2, 6, 3, 5, 9, 0, 0, 3, 8, 0, 1, 2, 5, 7, 4, 9, 5, 7, 9, 0, 0, 8, 0, 7, 8, 3, 8, 6, 7, 6, 4, 6, 9, 8, 7, 4, 1, 9, 9, 1, 3, 8, 6, 4, 4, 5, 1, 1, 6, 1, 9, 8, 2, 0
Offset: 0
Examples
(B)=0.6119259581259097681148380144011707389...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195407 *) N[x2, 100] RealDigits[%] (* (B) A195408 *) N[x3, 100] RealDigits[%] (* (C) A195409 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195410 *)
Comments