A195409 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
7, 1, 2, 7, 8, 7, 9, 1, 7, 3, 8, 5, 2, 0, 1, 2, 3, 3, 8, 0, 1, 6, 0, 9, 4, 6, 9, 7, 2, 6, 8, 2, 7, 1, 4, 1, 7, 5, 3, 6, 0, 7, 6, 5, 8, 6, 6, 8, 5, 4, 6, 6, 9, 8, 4, 2, 4, 8, 1, 2, 2, 8, 5, 5, 4, 1, 6, 3, 4, 0, 6, 1, 1, 8, 1, 9, 2, 3, 1, 9, 4, 8, 0, 4, 3, 8, 8, 6, 7, 5, 2, 7, 4, 6, 6, 0, 0, 6, 0, 3, 6, 8, 7, 5
Offset: 0
Examples
(C)=0.71278791738520123380160946972682714175360765866...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195407 *) N[x2, 100] RealDigits[%] (* (B) A195408 *) N[x3, 100] RealDigits[%] (* (C) A195409 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195410 *)
Extensions
a(99) corrected by Georg Fischer, Jul 18 2021
Comments