A195410 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of the right triangle ABC having sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
4, 6, 2, 9, 9, 9, 2, 8, 1, 8, 7, 2, 9, 4, 5, 1, 4, 5, 2, 5, 2, 4, 9, 1, 5, 0, 8, 8, 0, 0, 5, 4, 7, 8, 7, 1, 6, 2, 5, 0, 7, 4, 6, 2, 2, 4, 2, 6, 4, 0, 6, 4, 3, 1, 7, 5, 1, 9, 0, 9, 4, 4, 8, 2, 9, 9, 3, 2, 7, 6, 6, 5, 8, 4, 3, 7, 5, 6, 1, 8, 7, 5, 0, 9, 0, 4, 1, 7, 1, 3, 4, 1, 1, 0, 7, 0, 4, 8, 4, 3, 7, 6
Offset: 0
Examples
Philo(ABC,I)=0.4629992818729451452524915088005478716250...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195407 *) N[x2, 100] RealDigits[%] (* (B) A195408 *) N[x3, 100] RealDigits[%] (* (C) A195409 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195410 *)
Extensions
a(99) corrected by Georg Fischer, Jul 18 2021
Comments