This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195412 #5 Mar 30 2012 18:57:45 %S A195412 3,2,6,8,5,0,5,3,9,8,0,7,1,2,0,6,3,7,7,1,0,0,2,1,3,3,3,6,8,5,3,8,6,5, %T A195412 8,9,3,3,0,4,0,5,7,8,5,6,4,9,3,4,6,0,1,3,3,6,0,9,8,0,3,4,6,4,6,2,9,0, %U A195412 5,1,3,6,7,8,6,1,7,0,4,5,2,8,9,0,5,2,8,9,7,5,7,9,2,6,9,2,9,9,2,7 %N A195412 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(5,12,13). %C A195412 See A195304 for definitions and a general discussion. %e A195412 (A)=3.268505398071206377100213336853865893304057... %t A195412 a = 5; b = 12; h = 2 a/3; k = b/3; %t A195412 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195412 s = NSolve[D[f[t], t] == 0, t, 150] %t A195412 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195412 RealDigits[%, 10, 100] (* (A) A195412 *) %t A195412 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195412 s = NSolve[D[f[t], t] == 0, t, 150] %t A195412 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195412 RealDigits[%, 10, 100] (* (B) A195413 *) %t A195412 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195412 s = NSolve[D[f[t], t] == 0, t, 150] %t A195412 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195412 RealDigits[%, 10, 100] (* (C) A195414 *) %t A195412 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195412 RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *) %Y A195412 Cf. A195413, A195414, A195424. %K A195412 nonn,cons %O A195412 1,1 %A A195412 _Clark Kimberling_, Sep 18 2011