cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195414 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13).

This page as a plain text file.
%I A195414 #5 Mar 30 2012 18:57:45
%S A195414 6,4,9,5,1,6,0,5,0,2,9,2,0,9,4,5,3,2,4,4,9,9,3,9,5,2,6,3,7,4,2,5,2,4,
%T A195414 7,5,8,1,4,1,8,7,5,7,5,9,9,5,3,5,1,0,7,5,6,6,3,8,3,8,5,2,2,9,2,8,8,4,
%U A195414 5,4,9,7,1,6,2,6,9,8,8,7,3,3,6,7,7,6,6,2,9,4,8,0,8,7,6,3,4,5,0,6
%N A195414 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
%C A195414 See A195304 for definitions and a general discussion.
%e A195414 (C)=6.49516050292094532449939526374252475814...
%t A195414 a = 5; b = 12; h = 2 a/3; k = b/3;
%t A195414 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195414 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195414 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195414 RealDigits[%, 10, 100] (* (A) A195412 *)
%t A195414 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195414 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195414 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195414 RealDigits[%, 10, 100] (* (B) A195413 *)
%t A195414 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195414 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195414 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195414 RealDigits[%, 10, 100] (* (C) A195414 *)
%t A195414 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195414 RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *)
%Y A195414 Cf. A195304.
%K A195414 nonn,cons
%O A195414 1,1
%A A195414 _Clark Kimberling_, Sep 18 2011