This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195414 #5 Mar 30 2012 18:57:45 %S A195414 6,4,9,5,1,6,0,5,0,2,9,2,0,9,4,5,3,2,4,4,9,9,3,9,5,2,6,3,7,4,2,5,2,4, %T A195414 7,5,8,1,4,1,8,7,5,7,5,9,9,5,3,5,1,0,7,5,6,6,3,8,3,8,5,2,2,9,2,8,8,4, %U A195414 5,4,9,7,1,6,2,6,9,8,8,7,3,3,6,7,7,6,6,2,9,4,8,0,8,7,6,3,4,5,0,6 %N A195414 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(5,12,13). %C A195414 See A195304 for definitions and a general discussion. %e A195414 (C)=6.49516050292094532449939526374252475814... %t A195414 a = 5; b = 12; h = 2 a/3; k = b/3; %t A195414 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195414 s = NSolve[D[f[t], t] == 0, t, 150] %t A195414 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195414 RealDigits[%, 10, 100] (* (A) A195412 *) %t A195414 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195414 s = NSolve[D[f[t], t] == 0, t, 150] %t A195414 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195414 RealDigits[%, 10, 100] (* (B) A195413 *) %t A195414 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195414 s = NSolve[D[f[t], t] == 0, t, 150] %t A195414 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195414 RealDigits[%, 10, 100] (* (C) A195414 *) %t A195414 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195414 RealDigits[%, 10, 100] (* Philo(ABC,G) A195424 *) %Y A195414 Cf. A195304. %K A195414 nonn,cons %O A195414 1,1 %A A195414 _Clark Kimberling_, Sep 18 2011