cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195418 a(n) = phi(C(n)) / gcd(C(n)-1, phi(C(n))), where C(n) is the n-th Cullen number.

Original entry on oeis.org

1, 1, 3, 5, 3, 33, 5, 33, 341, 1045, 189, 1299, 891, 4437, 9477, 581, 3855, 105525, 27825, 23751, 173043, 10531345, 56511, 2386125, 380955, 256861, 24926139, 5108467, 32397379, 930343095, 930291, 36512775
Offset: 0

Views

Author

Alonso del Arte, Sep 20 2011

Keywords

Comments

When C(n) is prime (or 1), then a(n) = 1; that is, n is in A005849.
On the penultimate page of their paper, Grau and Luca ask for "a good (large) lower bound on this quantity which is valid for all n and which tends to infinity with n."

Examples

			a(2) = 3 because the second Cullen number is 9; phi(9) = 6, therefore 6/gcd(8, 6) = 6/2 = 3.
		

Crossrefs

Programs

  • Mathematica
    cullen[n_] := n(2^n) + 1; Table[EulerPhi[cullen[n]]/GCD[cullen[n] - 1, EulerPhi[cullen[n]]], {n, 0, 39}]
  • PARI
    a(n)=my(C=n<Charles R Greathouse IV, Feb 05 2013