A195418 a(n) = phi(C(n)) / gcd(C(n)-1, phi(C(n))), where C(n) is the n-th Cullen number.
1, 1, 3, 5, 3, 33, 5, 33, 341, 1045, 189, 1299, 891, 4437, 9477, 581, 3855, 105525, 27825, 23751, 173043, 10531345, 56511, 2386125, 380955, 256861, 24926139, 5108467, 32397379, 930343095, 930291, 36512775
Offset: 0
Examples
a(2) = 3 because the second Cullen number is 9; phi(9) = 6, therefore 6/gcd(8, 6) = 6/2 = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..848
- José María Grau Ribas and Florian Luca, Cullen numbers with the Lehmer property, Proceedings of the American Mathematical Society, Vol. 140, No. 1 (2012), pp. 129-134, preprint, arXiv:1103.3578 [math.NT], Mar 18, 2011.
Programs
-
Mathematica
cullen[n_] := n(2^n) + 1; Table[EulerPhi[cullen[n]]/GCD[cullen[n] - 1, EulerPhi[cullen[n]]], {n, 0, 39}]
-
PARI
a(n)=my(C=n<
Charles R Greathouse IV, Feb 05 2013
Comments