This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195426 #5 Mar 30 2012 18:57:45 %S A195426 1,3,8,2,1,1,5,8,6,0,2,8,3,0,9,9,8,8,2,6,2,0,7,5,3,9,9,1,3,0,7,2,8,0, %T A195426 2,7,9,6,5,1,8,4,5,0,4,8,2,3,5,7,9,5,9,2,6,9,4,3,5,8,5,0,5,0,6,0,8,5, %U A195426 3,2,2,1,3,5,1,9,2,4,4,8,4,5,0,1,0,0,3,8,2,2,7,4,4,9,2,4,2,6,4,6 %N A195426 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(7,24,25). %C A195426 See A195304 for definitions and a general discussion. %e A195426 (B)=13.821158602830998826207539913072802796518450... %t A195426 a = 7; b = 24; h = 2 a/3; k = b/3; %t A195426 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195426 s = NSolve[D[f[t], t] == 0, t, 150] %t A195426 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195426 RealDigits[%, 10, 100] (* (A) A195425 *) %t A195426 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195426 s = NSolve[D[f[t], t] == 0, t, 150] %t A195426 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195426 RealDigits[%, 10, 100] (* (B) A195426 *) %t A195426 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195426 s = NSolve[D[f[t], t] == 0, t, 150] %t A195426 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195426 RealDigits[%, 10, 100] (* (C) A195427 *) %t A195426 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195426 RealDigits[%, 10, 100] (* Philo(ABC,G) A195428 *) %Y A195426 Cf. A195304. %K A195426 nonn,cons %O A195426 2,2 %A A195426 _Clark Kimberling_, Sep 18 2011