This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195428 #5 Mar 30 2012 18:57:45 %S A195428 5,4,7,5,5,9,7,9,0,6,2,3,7,4,8,1,9,4,9,7,8,0,9,9,1,0,4,0,6,1,8,1,2,0, %T A195428 6,8,9,4,1,2,4,9,9,2,3,2,7,6,0,9,9,2,1,5,8,8,6,0,5,9,9,6,3,0,0,6,9,2, %U A195428 9,4,7,9,9,8,3,8,6,1,5,7,2,0,0,1,0,8,4,5,1,6,4,1,2,8,5,3,7,7,6,6 %N A195428 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 7,24,25 right triangle ABC. %C A195428 See A195304 for definitions and a general discussion. %e A195428 Philo(ABC,G)=0.5475597906237481949780991040618120... %t A195428 a = 7; b = 24; h = 2 a/3; k = b/3; %t A195428 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195428 s = NSolve[D[f[t], t] == 0, t, 150] %t A195428 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195428 RealDigits[%, 10, 100] (* (A) A195425 *) %t A195428 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195428 s = NSolve[D[f[t], t] == 0, t, 150] %t A195428 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195428 RealDigits[%, 10, 100] (* (B) A195426 *) %t A195428 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195428 s = NSolve[D[f[t], t] == 0, t, 150] %t A195428 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195428 RealDigits[%, 10, 100] (* (C) A195427 *) %t A195428 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195428 RealDigits[%, 10, 100] (* Philo(ABC,G) A195428 *) %Y A195428 Cf. A195304. %K A195428 nonn,cons %O A195428 0,1 %A A195428 _Clark Kimberling_, Sep 18 2011