cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195432 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 8,15,17 right triangle ABC.

This page as a plain text file.
%I A195432 #5 Mar 30 2012 18:57:45
%S A195432 6,0,7,5,1,0,3,7,4,5,4,1,9,3,4,5,0,6,9,0,2,4,5,8,4,2,1,1,9,5,9,4,0,3,
%T A195432 0,2,1,9,8,6,4,6,8,1,8,7,8,2,5,7,4,7,1,6,6,8,6,5,9,0,4,3,0,1,0,1,6,3,
%U A195432 1,9,4,3,7,9,6,7,4,6,7,1,1,7,9,5,0,6,8,9,6,3,2,6,3,3,1,0,6,2,2,3
%N A195432 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 8,15,17 right triangle ABC.
%C A195432 See A195304 for definitions and a general discussion.
%e A195432 Philo(ABC,G)=0.6075103745419345069024584211959403021986468...
%t A195432 a = 8; b = 15; h = 2 a/3; k = b/3;
%t A195432 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195432 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195432 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195432 RealDigits[%, 10, 100] (* (A) A195429 *)
%t A195432 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195432 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195432 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195432 RealDigits[%, 10, 100] (* (B) A195430 *)
%t A195432 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195432 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195432 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195432 RealDigits[%, 10, 100] (* (C) A195431 *)
%t A195432 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195432 RealDigits[%, 10, 100] (* Philo(ABC,G) A195432 *)
%Y A195432 Cf. A195304.
%K A195432 nonn,cons
%O A195432 0,1
%A A195432 _Clark Kimberling_, Sep 18 2011