cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195433 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).

This page as a plain text file.
%I A195433 #9 Jul 27 2018 09:36:08
%S A195433 6,1,4,7,5,7,2,2,7,2,3,3,3,9,0,6,2,1,5,9,3,3,1,9,2,4,8,0,9,1,1,9,0,0,
%T A195433 9,9,4,7,1,1,6,2,5,4,4,6,2,5,6,9,8,3,6,3,8,5,8,2,6,4,6,7,2,6,2,1,6,2,
%U A195433 5,6,1,1,4,6,1,7,9,6,2,0,4,1,6,1,6,8,8,1,5,6,9,9,9,1,9,3,9,5,0,1
%N A195433 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).
%C A195433 See A195304 for definitions and a general discussion.
%H A195433 G. C. Greubel, <a href="/A195433/b195433.txt">Table of n, a(n) for n = 0..10000</a>
%e A195433 (A)=0.6147572272333906215933192480911...
%t A195433 a = 1; b = 1; h = 2 a/3; k = b/3;
%t A195433 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195433 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195433 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195433 RealDigits[%, 10, 100] (* (A) A195433 *)
%t A195433 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195433 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195433 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195433 RealDigits[%, 10, 100] (* (B)=(2/3)sqrt(2); -1+A179587 *)
%t A195433 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195433 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195433 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195433 RealDigits[%, 10, 100] (* (C) A195433 *)
%t A195433 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195433 RealDigits[%, 10, 100] (* Philo(ABC,G) A195436 *)
%Y A195433 Cf. A195304, A195434, A195435, A195436.
%K A195433 nonn,cons
%O A195433 0,1
%A A195433 _Clark Kimberling_, Sep 18 2011