cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195434 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).

This page as a plain text file.
%I A195434 #7 Feb 11 2025 13:15:58
%S A195434 6,4,8,7,8,2,1,3,4,1,2,6,1,6,1,2,8,5,3,8,8,8,0,3,0,3,8,0,7,6,6,9,3,5,
%T A195434 6,0,6,1,9,4,0,3,5,5,7,0,5,8,6,7,9,5,2,3,3,9,6,4,1,2,8,3,6,3,6,8,3,3,
%U A195434 2,9,8,5,3,3,9,6,2,2,6,7,3,0,3,5,9,1,4,7,7,3,5,6,8,8,4,0,8,0,4,7
%N A195434 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
%C A195434 See A195304 for definitions and a general discussion.
%H A195434 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%e A195434 (A)=0.648782134126161285388803038076693560619403...
%t A195434 a = 1; b = 2; h = 2 a/3; k = b/3;
%t A195434 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195434 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195434 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195434 RealDigits[%, 10, 100] (* (A) A195434 *)
%t A195434 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195434 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195434 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195434 RealDigits[%, 10, 100] (* (B) A195435 *)
%t A195434 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195434 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195434 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195434 RealDigits[%, 10, 100] (* (C) A195444 *)
%t A195434 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195434 RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *)
%o A195434 (PARI) sqrt(subst((45*t^4 - 126*t^3 + 125*t^2 - 52*t + 8)/(9*t^2 - 12*t + 4), t, polrootsreal(270*x^4 - 738*x^3 + 756*x^2 - 344*x + 56)[1])) \\ _Charles R Greathouse IV_, Feb 11 2025
%o A195434 (PARI) polrootsreal(3645*x^6 + 11421*x^4 + 6219*x^2 - 4913)[2] \\ _Charles R Greathouse IV_, Feb 11 2025
%Y A195434 Cf. A195304, A195435, A195444, A195445.
%K A195434 nonn,cons
%O A195434 0,1
%A A195434 _Clark Kimberling_, Sep 18 2011