cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195435 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).

This page as a plain text file.
%I A195435 #8 Feb 11 2025 13:31:41
%S A195435 1,3,8,7,3,1,2,7,2,8,3,1,3,8,2,0,9,1,7,4,6,3,3,6,0,2,4,0,9,8,2,2,3,3,
%T A195435 2,1,2,5,9,6,4,4,1,8,6,2,5,1,6,9,7,6,7,6,7,4,7,6,5,4,1,2,8,4,2,3,5,6,
%U A195435 2,8,3,4,5,5,0,0,9,7,1,9,7,9,4,1,5,3,7,9,6,0,7,3,5,5,9,4,5,3,7,4
%N A195435 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
%C A195435 See A195304 for definitions and a general discussion.
%H A195435 <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>.
%e A195435 (B)=1.387312728313820917463360240982233212...
%t A195435 a = 1; b = 2; h = 2 a/3; k = b/3;
%t A195435 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195435 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195435 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195435 RealDigits[%, 10, 100] (* (A) A195434 *)
%t A195435 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195435 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195435 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195435 RealDigits[%, 10, 100] (* (B) A195435 *)
%t A195435 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195435 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195435 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195435 RealDigits[%, 10, 100] (* (C) A195444 *)
%t A195435 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195435 RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *)
%o A195435 (PARI) sqrt(subst((9*t^4 - 30*t^3 + 41*t^2 - 28*t + 8)/(9*t^2 - 12*t + 4), t, polrootsreal(27*t^3 - 54*t^2 + 36*t - 4)[1])) \\ _Charles R Greathouse IV_, Feb 11 2025
%o A195435 (PARI) polrootsreal(729*x^6 - 1215*x^4 - 297*x^2 - 125)[2] \\ _Charles R Greathouse IV_, Feb 11 2025
%Y A195435 Cf. A195304.
%K A195435 nonn,cons
%O A195435 1,2
%A A195435 _Clark Kimberling_, Sep 18 2011