This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195444 #6 Mar 30 2012 18:57:45 %S A195444 1,1,1,5,7,6,4,8,6,9,4,3,5,2,7,6,7,1,8,6,7,5,9,0,8,9,5,5,5,1,8,7,7,7, %T A195444 3,5,1,2,3,8,9,1,0,5,1,4,0,2,3,5,9,5,2,4,1,1,9,9,6,4,0,3,7,9,6,8,4,1, %U A195444 2,6,3,7,5,2,0,3,6,5,0,4,8,6,0,7,9,5,8,1,1,3,9,7,2,3,4,1,9,6,9,1 %N A195444 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)). %C A195444 See A195304 for definitions and a general discussion. %e A195444 (C)=1.11576486943527671867590895551877735123891... %t A195444 a = 1; b = 2; h = 2 a/3; k = b/3; %t A195444 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195444 s = NSolve[D[f[t], t] == 0, t, 150] %t A195444 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195444 RealDigits[%, 10, 100] (* (A) A195434 *) %t A195444 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195444 s = NSolve[D[f[t], t] == 0, t, 150] %t A195444 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195444 RealDigits[%, 10, 100] (* (B) A195435 *) %t A195444 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195444 s = NSolve[D[f[t], t] == 0, t, 150] %t A195444 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195444 RealDigits[%, 10, 100] (* (C) A195444 *) %t A195444 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195444 RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *) %Y A195444 Cf. A195304. %K A195444 nonn,cons %O A195444 1,4 %A A195444 _Clark Kimberling_, Sep 18 2011