cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195446 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)).

This page as a plain text file.
%I A195446 #5 Mar 30 2012 18:57:45
%S A195446 6,5,8,0,5,2,5,9,6,8,2,3,1,4,3,9,7,9,5,9,1,2,2,6,4,9,3,8,8,7,8,9,4,3,
%T A195446 8,6,6,6,0,8,2,7,9,8,0,7,1,5,6,3,6,8,4,9,1,7,5,2,8,9,9,0,2,6,1,5,7,1,
%U A195446 6,3,0,5,6,9,9,4,8,4,7,7,6,5,9,2,8,5,4,3,4,9,0,5,1,8,7,7,6,6,4,9
%N A195446 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)).
%C A195446 See A195304 for definitions and a general discussion.
%e A195446 (A)=0.658052596823143979591226493887894386660...
%t A195446 a = 1; b = 3; h = 2 a/3; k = b/3;
%t A195446 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195446 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195446 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195446 RealDigits[%, 10, 100] (* (A) A195446  *)
%t A195446 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195446 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195446 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195446 RealDigits[%, 10, 100] (* (B) A195447 *)
%t A195446 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195446 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195446 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195446 RealDigits[%, 10, 100] (* (C) A195448 *)
%t A195446 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195446 RealDigits[%, 10, 100] (* Philo(ABC,G) A195449 *)
%Y A195446 Cf. A195304, A195447, A195448, A195449.
%K A195446 nonn,cons
%O A195446 0,1
%A A195446 _Clark Kimberling_, Sep 18 2011