This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195446 #5 Mar 30 2012 18:57:45 %S A195446 6,5,8,0,5,2,5,9,6,8,2,3,1,4,3,9,7,9,5,9,1,2,2,6,4,9,3,8,8,7,8,9,4,3, %T A195446 8,6,6,6,0,8,2,7,9,8,0,7,1,5,6,3,6,8,4,9,1,7,5,2,8,9,9,0,2,6,1,5,7,1, %U A195446 6,3,0,5,6,9,9,4,8,4,7,7,6,5,9,2,8,5,4,3,4,9,0,5,1,8,7,7,6,6,4,9 %N A195446 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)). %C A195446 See A195304 for definitions and a general discussion. %e A195446 (A)=0.658052596823143979591226493887894386660... %t A195446 a = 1; b = 3; h = 2 a/3; k = b/3; %t A195446 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195446 s = NSolve[D[f[t], t] == 0, t, 150] %t A195446 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195446 RealDigits[%, 10, 100] (* (A) A195446 *) %t A195446 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195446 s = NSolve[D[f[t], t] == 0, t, 150] %t A195446 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195446 RealDigits[%, 10, 100] (* (B) A195447 *) %t A195446 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195446 s = NSolve[D[f[t], t] == 0, t, 150] %t A195446 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195446 RealDigits[%, 10, 100] (* (C) A195448 *) %t A195446 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195446 RealDigits[%, 10, 100] (* Philo(ABC,G) A195449 *) %Y A195446 Cf. A195304, A195447, A195448, A195449. %K A195446 nonn,cons %O A195446 0,1 %A A195446 _Clark Kimberling_, Sep 18 2011