This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195450 #5 Mar 30 2012 18:57:45 %S A195450 1,2,7,5,7,0,6,9,9,4,4,4,0,0,5,5,2,7,6,4,5,0,3,7,8,5,5,6,2,9,1,5,3,5, %T A195450 2,8,7,5,2,2,8,4,4,7,8,4,4,9,8,3,3,3,9,8,7,9,3,6,7,0,3,0,2,3,1,4,9,2, %U A195450 5,0,0,7,8,6,0,5,6,3,7,3,4,3,6,0,6,4,1,4,5,3,9,6,2,7,5,9,0,9,2,4 %N A195450 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(2,3,sqrt(13)). %C A195450 See A195304 for definitions and a general discussion. %e A195450 (A)=1.2757069944400552764503785562915352875228447844... %t A195450 a = 2; b = 3; h = 2 a/3; k = b/3; %t A195450 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195450 s = NSolve[D[f[t], t] == 0, t, 150] %t A195450 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195450 RealDigits[%, 10, 100] (* (A) A195450 *) %t A195450 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195450 s = NSolve[D[f[t], t] == 0, t, 150] %t A195450 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195450 RealDigits[%, 10, 100] (* (B) A195451 *) %t A195450 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195450 s = NSolve[D[f[t], t] == 0, t, 150] %t A195450 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195450 RealDigits[%, 10, 100] (* (C) A195452 *) %t A195450 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195450 RealDigits[%, 10, 100] (* Philo(ABC,G) A195453 *) %Y A195450 Cf. A195304, A195451, A195452, A195453. %K A195450 nonn,cons %O A195450 1,2 %A A195450 _Clark Kimberling_, Sep 18 2011