cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195451 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(2,3,sqrt(13)).

This page as a plain text file.
%I A195451 #5 Mar 30 2012 18:57:45
%S A195451 2,3,4,1,1,6,0,7,9,3,0,7,3,3,2,1,9,7,5,6,1,4,8,5,3,3,8,1,3,7,6,3,8,3,
%T A195451 4,9,3,4,2,4,4,2,5,3,8,8,6,7,8,4,4,6,8,7,5,5,7,4,6,5,0,5,2,2,5,5,1,8,
%U A195451 6,1,7,6,4,9,3,5,2,2,3,4,7,9,6,5,6,5,8,7,1,7,9,4,6,1,0,5,3,0,3,9
%N A195451 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(2,3,sqrt(13)).
%C A195451 See A195304 for definitions and a general discussion.
%e A195451 (B)=2.3411607930733219756148533813763834934244253886784...
%t A195451 a = 2; b = 3; h = 2 a/3; k = b/3;
%t A195451 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195451 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195451 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195451 RealDigits[%, 10, 100] (* (A) A195450 *)
%t A195451 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195451 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195451 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195451 RealDigits[%, 10, 100] (* (B) A195451 *)
%t A195451 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195451 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195451 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195451 RealDigits[%, 10, 100] (* (C) A195452  *)
%t A195451 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195451 RealDigits[%, 10, 100] (* Philo(ABC,G) A195453 *)
%Y A195451 Cf. A195304.
%K A195451 nonn,cons
%O A195451 1,1
%A A195451 _Clark Kimberling_, Sep 18 2011