cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195454 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

This page as a plain text file.
%I A195454 #11 Dec 24 2017 09:24:18
%S A195454 8,8,7,3,6,6,3,8,9,6,4,8,5,9,1,6,1,8,6,2,7,9,8,1,8,0,5,9,7,3,8,0,8,7,
%T A195454 5,8,1,3,5,9,3,9,8,5,0,2,4,3,8,6,0,9,1,1,2,1,6,9,3,1,1,7,8,6,5,9,7,8,
%U A195454 4,4,4,6,5,3,6,2,5,9,2,1,0,0,7,0,0,8,7,0,0,3,9,6,5,8,9,1,5,1,1,2
%N A195454 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).
%C A195454 See A195304 for definitions and a general discussion.
%H A195454 G. C. Greubel, <a href="/A195454/b195454.txt">Table of n, a(n) for n = 0..10000</a>
%e A195454 (A)=0.88736638964859161862798180597380875813593985...
%t A195454 a = Sqrt[2]; b = Sqrt[3]; h = 2 a/3; k = b/3;
%t A195454 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195454 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195454 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195454 RealDigits[%, 10, 100] (* (A) A195454 *)
%t A195454 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195454 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195454 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195454 RealDigits[%, 10, 100] (* (B) A195455 *)
%t A195454 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195454 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195454 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195454 RealDigits[%, 10, 100] (* (C) A195456 *)
%t A195454 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195454 RealDigits[%, 10, 100] (* Philo(ABC,G) A195457 *)
%Y A195454 Cf. A195304, A195455, A195456, A195457.
%K A195454 nonn,cons
%O A195454 0,1
%A A195454 _Clark Kimberling_, Sep 19 2011