cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195455 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

This page as a plain text file.
%I A195455 #10 Dec 24 2017 09:25:55
%S A195455 1,4,8,0,6,3,4,6,1,0,1,1,1,7,3,9,3,2,9,2,8,0,6,7,8,6,5,6,4,1,5,6,3,5,
%T A195455 3,1,5,8,9,4,1,0,1,5,1,8,3,5,9,9,8,2,3,8,2,1,5,1,7,7,4,5,3,3,9,2,3,8,
%U A195455 6,3,2,4,5,6,4,3,9,1,0,6,4,8,7,8,7,2,9,1,2,1,5,7,7,3,5,5,9,8,6,0
%N A195455 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).
%C A195455 See A195304 for definitions and a general discussion.
%H A195455 G. C. Greubel, <a href="/A195455/b195455.txt">Table of n, a(n) for n = 1..10000</a>
%e A195455 (B)=1.48063461011173932928067865641563531589410...
%t A195455 a = Sqrt[2]; b = Sqrt[3]; h = 2 a/3; k = b/3;
%t A195455 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195455 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195455 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195455 RealDigits[%, 10, 100] (* (A) A195454 *)
%t A195455 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195455 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195455 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195455 RealDigits[%, 10, 100] (* (B) A195455 *)
%t A195455 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195455 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195455 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195455 RealDigits[%, 10, 100] (* (C) A195456 *)
%t A195455 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195455 RealDigits[%, 10, 100] (* Philo(ABC,G) A195457 *)
%Y A195455 Cf. A195304, A195454, A195456, A195457.
%K A195455 nonn,cons
%O A195455 1,2
%A A195455 _Clark Kimberling_, Sep 19 2011