cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195456 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

This page as a plain text file.
%I A195456 #10 Dec 24 2017 09:26:00
%S A195456 1,0,3,9,0,8,1,4,7,6,5,9,6,9,8,9,2,3,0,5,5,0,3,1,1,6,2,1,1,2,9,7,8,9,
%T A195456 1,0,3,0,4,1,8,7,9,6,3,9,5,4,0,3,7,6,8,1,8,9,3,8,7,8,7,0,8,0,5,9,7,8,
%U A195456 5,4,1,3,5,3,1,5,9,9,7,9,0,3,1,4,5,6,9,5,2,5,5,6,5,2,3,6,1,1,4,7
%N A195456 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).
%C A195456 See A195304 for definitions and a general discussion.
%H A195456 G. C. Greubel, <a href="/A195456/b195456.txt">Table of n, a(n) for n = 1..10000</a>
%e A195456 (C)=1.03908147659698923055031162112978910304...
%t A195456 a = Sqrt[2]; b = Sqrt[3]; h = 2 a/3; k = b/3;
%t A195456 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195456 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195456 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195456 RealDigits[%, 10, 100] (* (A) A195454 *)
%t A195456 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195456 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195456 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195456 RealDigits[%, 10, 100] (* (B) A195455 *)
%t A195456 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195456 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195456 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195456 RealDigits[%, 10, 100] (* (C) A195456 *)
%t A195456 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195456 RealDigits[%, 10, 100] (* Philo(ABC,G) A195457 *)
%Y A195456 Cf. A195304, A195454, A195455, A195457.
%K A195456 nonn,cons
%O A195456 1,3
%A A195456 _Clark Kimberling_, Sep 19 2011