A195457 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the sqrt(2),sqrt(3),sqrt(5) right triangle ABC.
6, 3, 3, 0, 1, 2, 2, 8, 1, 0, 0, 0, 5, 8, 0, 7, 6, 6, 0, 0, 5, 5, 6, 0, 8, 8, 7, 9, 4, 6, 0, 6, 8, 1, 5, 1, 7, 2, 5, 3, 4, 0, 2, 4, 6, 5, 2, 9, 0, 7, 5, 0, 4, 5, 1, 5, 4, 9, 5, 2, 8, 3, 3, 1, 1, 6, 7, 6, 6, 2, 4, 7, 2, 9, 7, 3, 8, 1, 6, 8, 8, 9, 2, 9, 3, 3, 2, 0, 4, 4, 9, 1, 9, 5, 7, 6, 0, 1, 1, 2
Offset: 0
Examples
Philo(ABC,G)=0.6330122810005807660055608879460681...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = Sqrt[2]; b = Sqrt[3]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195454 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195455 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195456 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195457 *)
Comments