This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195471 #9 Jan 27 2018 02:29:19 %S A195471 6,3,5,0,7,4,3,6,8,6,2,0,6,6,8,1,3,7,5,6,2,1,5,7,6,6,1,6,4,5,4,6,4,6, %T A195471 0,8,6,9,7,6,8,0,5,0,0,0,7,5,5,5,1,9,3,1,3,2,1,8,6,7,4,2,2,9,2,7,5,7, %U A195471 4,9,4,0,4,3,3,5,5,5,9,7,7,8,3,2,0,1,1,3,4,1,5,5,5,7,0,6,3,9,7,8 %N A195471 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)). %C A195471 See A195304 for definitions and a general discussion. %H A195471 G. C. Greubel, <a href="/A195471/b195471.txt">Table of n, a(n) for n = 1..10000</a> %e A195471 (A)=0.6350743686206681375621576616454646086976805000... %t A195471 a = 1; b = Sqrt[2]; h = 2 a/3; k = b/3; %t A195471 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195471 s = NSolve[D[f[t], t] == 0, t, 150] %t A195471 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195471 RealDigits[%, 10, 100] (* (A) A195471 *) %t A195471 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195471 s = NSolve[D[f[t], t] == 0, t, 150] %t A195471 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195471 RealDigits[%, 10, 100] (* (B) A195472 *) %t A195471 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195471 s = NSolve[D[f[t], t] == 0, t, 150] %t A195471 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195471 RealDigits[%, 10, 100] (* (C) A195473 *) %t A195471 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195471 RealDigits[%, 10, 100] (* Philo(ABC,G) A195474 *) %Y A195471 Cf. A195304, A195471, A195472, A195473. %K A195471 nonn,cons %O A195471 1,1 %A A195471 _Clark Kimberling_, Sep 19 2011