cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195472 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).

This page as a plain text file.
%I A195472 #8 Jan 27 2018 02:29:23
%S A195472 1,1,3,2,4,4,8,9,8,3,6,7,2,5,6,4,4,8,0,4,2,5,9,7,1,2,5,1,8,3,3,8,0,3,
%T A195472 5,9,6,8,2,9,8,2,7,8,2,9,1,7,5,7,2,5,8,7,9,4,6,3,3,8,7,3,8,2,7,8,3,1,
%U A195472 4,6,7,6,3,1,5,0,5,5,9,5,0,5,5,3,6,6,3,7,1,0,8,6,8,9,0,6,1,5,3,1
%N A195472 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
%C A195472 See A195304 for definitions and a general discussion.
%H A195472 G. C. Greubel, <a href="/A195472/b195472.txt">Table of n, a(n) for n = 1..10000</a>
%e A195472 (B)=1.1324489836725644804259712518338035968298278...
%t A195472 a = 1; b = Sqrt[2]; h = 2 a/3; k = b/3;
%t A195472 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195472 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195472 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195472 RealDigits[%, 10, 100] (* (A) A195471 *)
%t A195472 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195472 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195472 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195472 RealDigits[%, 10, 100] (* (B) A195472 *)
%t A195472 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195472 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195472 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195472 RealDigits[%, 10, 100] (* (C) A195473 *)
%t A195472 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195472 RealDigits[%, 10, 100] (* Philo(ABC,G) A195474 *)
%Y A195472 Cf. A195304.
%K A195472 nonn,cons
%O A195472 1,3
%A A195472 _Clark Kimberling_, Sep 19 2011