cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195473 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).

This page as a plain text file.
%I A195473 #8 Jan 27 2018 02:29:25
%S A195473 8,3,1,9,7,7,5,6,0,2,8,9,1,6,3,2,0,4,5,9,3,0,2,3,8,1,1,4,8,1,9,6,7,8,
%T A195473 2,7,4,4,1,2,5,0,3,0,4,9,9,1,9,8,6,7,8,3,5,4,9,3,4,1,1,3,7,0,4,5,9,1,
%U A195473 4,2,8,7,4,9,7,7,6,9,9,2,5,9,7,0,5,8,3,3,2,4,3,6,9,8,7,6,3,7,8,7
%N A195473 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
%C A195473 See A195304 for definitions and a general discussion.
%H A195473 G. C. Greubel, <a href="/A195473/b195473.txt">Table of n, a(n) for n = 0..10000</a>
%e A195473 (C)=0.8319775602891632045930238114819678...
%t A195473 a = 1; b = Sqrt[2]; h = 2 a/3; k = b/3;
%t A195473 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195473 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195473 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195473 RealDigits[%, 10, 100] (* (A) A195471 *)
%t A195473 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195473 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195473 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195473 RealDigits[%, 10, 100] (* (B) A195472 *)
%t A195473 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195473 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195473 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195473 RealDigits[%, 10, 100] (* (C) A195473 *)
%t A195473 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195473 RealDigits[%, 10, 100] (* Philo(ABC,G) A195474 *)
%Y A195473 Cf. A195304.
%K A195473 nonn,cons
%O A195473 0,1
%A A195473 _Clark Kimberling_, Sep 19 2011