A195474 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 1,sqrt(2),sqrt(3) right triangle ABC.
6, 2, 6, 9, 5, 0, 1, 1, 2, 3, 5, 3, 4, 9, 0, 9, 2, 5, 3, 9, 3, 5, 2, 7, 5, 2, 4, 8, 8, 7, 7, 1, 5, 8, 9, 1, 9, 9, 9, 2, 6, 8, 6, 2, 7, 2, 9, 9, 8, 6, 9, 2, 3, 1, 1, 3, 4, 7, 5, 9, 8, 0, 7, 8, 6, 2, 3, 7, 0, 1, 9, 8, 1, 6, 3, 6, 7, 0, 3, 1, 8, 5, 3, 1, 4, 0, 2, 9, 7, 1, 5, 8, 4, 8, 9, 9, 1, 1, 5, 1
Offset: 0
Examples
Philo(ABC,G)=0.626950112353490925393527524887715891999...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 1; b = Sqrt[2]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195471 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195472 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195473 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195474 *)
Comments